Dense domains, symmetric operators and spectral triples

نویسندگان

  • Iain Forsyth
  • Bram Mesland
  • Adam Rennie
  • IAIN FORSYTH
  • BRAM MESLAND
  • ADAM RENNIE
چکیده

This article is about erroneous attempts to weaken the standard definition of unbounded Kasparov module (or spectral triple). This issue has been addressed previously, but here we present concrete counterexamples to claims in the literature that Fredholm modules can be obtained from these weaker variations of spectral triple. Our counterexamples are constructed using self-adjoint extensions of symmetric operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral triples of weighted groups

We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.

متن کامل

Boundary Triples and Weyl Functions for Singular Perturbations of Self-adjoint Operators

Given the symmetric operator AN obtained by restricting the self-adjoint operator A to N , a linear dense set, closed with respect to the graph norm, we determine a convenient boundary triple for the adjoint A N and the corresponding Weyl function. These objects provide us with the self-adjoint extensions of AN and their resolvents.

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Inverse Spectral Theory for Symmetric Operators with Several Gaps: Scalar-type Weyl Functions

Let S be the orthogonal sum of infinitely many pairwise unitarily equivalent symmetric operators with non-zero deficiency indices. Let J be an open subset of R. If there exists a self-adjoint extension S0 of S such that J is contained in the resolvent set of S0 and the associated Weyl function of the pair {S, S0} is monotone with respect to J , then for any self-adjoint operator R there exists ...

متن کامل

ar X iv : 0 81 0 . 17 89 v 1 [ m at h . SP ] 1 0 O ct 2 00 8 SPECTRAL THEORY OF ELLIPTIC OPERATORS IN EXTERIOR DOMAINS

We consider various closed (and self-adjoint) extensions of elliptic differential expressions of the type A = P 06|α|,|β|6m(−1) Daα,β(x)D β , aα,β(·) ∈ C ∞(Ω), on smooth (bounded or unbounded) domains Ω in R with compact boundary ∂Ω. Using the concept of boundary triples and operator-valued Weyl–Titchmarsh functions, we prove various trace ideal properties of powers of resolvent differences of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014